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ABSTRACT

Measurements have been performed on a family of water spheres at the National Institute of

Standards and Technology (NIST) facilities.  These measurements are important for criticality safety

studies in that, frequently, difficulties have arisen in predicting the reactivity of individually subcritical

components assembled in a critical array.  It has been postulated that errors in the neutron leakage from

individual elements in the array could be responsible for these problems.  In these NIST measurements,

an accurate determination of the leakage from a fission spectrum, modified by water scattering, is

available.

Previously, results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without

cadmium covers over the fission chambers, were presented for four fissionable materials:  235U, 238U,

237Np, and 239Pu.  Results were also given for “dry” systems, in which the water spheres were drained of

water, with the results corresponding to essentially measurements of unmoderated 252Cf spontaneous-

fission neutrons.  The calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry

systems and 0.93 to 1.05 for the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%.

These results indicated discrepancies that were clearly outside of the experimental uncertainties, and

further investigation was suggested.

This work updates the previous calculations with a comparison of the predicted C/E values with

ENDF/B-V and ENDF/B-VI transport cross sections.  Variations in the predicted C/E values that arise

from the use of ENDF/B-V, ENDF/B-VI, ENDL92, and LLLDOS for the response fission cross sections

are also tabulated.  The use of both a 45-group NIST fission spectrum and a continuous-energy fission

spectrum for 252Cf are evaluated.
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The use of the generalized-linear-least-squares (GLLSM) procedures to investigate the reported

discrepancies in the water sphere results for 235U, 238U, 239Pu, and 237Np is reported herein.  These studies

should be a valuable exercise to demonstrate the utility of the GLLS methodology and to attempt to

understand the discrepancies seen.
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1. INTRODUCTION

Over the past 10 years, various groups from the National Institute of Standards and Technology

(NIST), Los Alamos National Laboratory (LANL), and Oak Ridge National Laboratory (ORNL) have

analyzed the results of measurements performed on a family of water spheres at the NIST facilities.1-3

These measurements are important for criticality safety studies in that, frequently, difficulties have arisen

in predicting the reactivity of individually subcritical components assembled in a critical array.  It has

been postulated that errors in the neutron leakage from individual elements in an array could be

responsible for these difficulties.  An accurate determination of the leakage from a fission spectrum,

modified by water scattering, is available in the NIST measurements.

The NIST experiments are unique in their simplicity, flexibility, and cost-effectiveness.  They are

designed to be essentially one-dimensional (1-D); however, more accurate results currently require multi-

dimensional techniques.  They are quite flexible in that only the shell needs to be replaced in order to

perform experiments on an entirely new configuration.  Experiments can be easily envisioned to address

concerns in various materials [i.e., iron (partially completed), aluminum, silicon dioxide, etc.].  These

experiments are very cost-effective, because very little fissile material has to be stored and handled.  The

primary items necessary for additional experiments are the existing source and detectors, along with

shells of the particular material of interest.

The capabilities of the NIST facility mesh very nicely with some of the potential uses of the

generalized-linear-least-squares methodology (GLLSM)4 that is currently being developed as a part of the

DOE Nuclear Criticality Safety Program.  For example, these water-sphere measurements can be

considered as a variable thickness “filter” in which the energies of interest for the fission cross sections

for various fissile materials can be tested, as well as various degrees of moderation due to water

scattering.  Similar tests could also be performed for other moderators of interest.  The utility of these

experiments in the GLLSM procedure is that they give information of value to criticality safety
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applications that would otherwise be gained by performing critical experiments.  This situation is

analogous to the use of resonance integral and thermal cross-section values to aid in the normalization of

measured cross-section shapes by cross-section evaluators.

Previously,3 results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without

cadmium-covers over the fission chambers, were presented for four fissionable materials:  235U, 238U,

237Np, and 239Pu.  Results2 were also given for “dry” systems, in which the water spheres were drained,

corresponding to measurements of essentially unmoderated 252Cf spontaneous-fission neutrons.  The

calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry systems and 0.93 to 1.05 for

the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%.  These results indicated

discrepancies that were clearly outside of the experimental uncertainties, suggesting the need for further

investigation.

As was indicated earlier, the experiments consist of a neutron source (i.e., 252Cf spontaneous

fission); a medium through which the neutrons transport (i.e., water); and a response measurement (i.e.,

various fission foils).  For an unequivocal analysis of the experiments, parameters relevant to each of

these constituents should be varied independently.  Thus, the neutron source, transport cross sections,

and fission cross sections were separately varied in this study to determine their effects on the overall

results.  This work updates the previous calculations with a comparison of the predicted C/E values with

ENDF/B-V5 and ENDF/B-VI6 transport cross sections.  Variations in the predicted C/E values that arise

from the use of ENDF/B-V, ENDF/B-VI, ENDL92 (ref. 7), and LLLDOS8 for the response fission cross

sections are also tabulated.  Finally, the use of both a 45-group NIST fission spectrum9 and a continuous-

energy fission spectrum10 for 252Cf are evaluated.

The use of the GLLSM procedures to investigate the reported discrepancies in the water-sphere

results for 235U, 238U, 239Pu, and 237Np is reported herein.  These studies are expected to be valuable for

demonstrating the utility of the GLLSM procedures and understanding the reported discrepancies.
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2. DESCRIPTION OF NIST MEASUREMENTS

A very detailed set of experimental measurements was performed at the NIST facilities.  A thin-

encapsulated 252Cf-neutron source was suspended via a thin-walled stainless steel tube to the center of a

spherical shell of stainless steel.  A pair of double-fission chambers was positioned symmetrically on

opposite sides of the spherical shell.  Each double-fission chamber contained two foils positioned at

either side of the center of the chamber, generally within 0.03 cm of each other.  Figure 1 shows an

illustration of the experimental geometry.  Measurements were performed with the stainless steel tube

and spherical container either dry or filled with pure water.  Measurements were performed with bare and

cadmium- covered fission chambers.  Three sets of measurements, utilizing different sized containers,

were performed for foils of 235U, 238U, 237Np, and 239Pu.  The stainless steel spherical-shell containers for

the three sets of measurements had radii of 3.81, 5.08, and 6.35 cm (1.5-, 2.0-, and 2.5-in. radii), with

corresponding average foil positions of 7.62, 7.62 and 9.525 cm.  Therefore, for each foil location and

foil type, four measurements were made; no water or cadmium (bare), no water with cadmium (Cd),

water and no cadmium (H2O), and water with cadmium (H2O + Cd).  The measurement results have been

previously reported;1 however, the dry results for the largest sphere are currently not available.  The latter

measurements were performed, but only as a check of previous measurements, since they were not

expected to deviate from those of the smaller spheres.
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Fig. 1.  NIST experimental geometry for the 5.08-cm (2-in.) sphere.
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3. DESCRIPTION OF THE MONTE CARLO

CALCULATIONS

Previously, multidimensional calculations were performed3 by both the LANL and ORNL staff

using ENDF/B-V cross sections.  Those calculations indicated that, while simple one-dimensional

models gave consistent results between the organizations, they significantly underpredicted the

measurements by up to 30%.  As a result, a multidimensional MCNP11 model with detailed geometry was

constructed by LANL staff for further studies.  Previous studies showed that the contributions from

neutrons scattered by the laboratory floor and other structures were negligible, and thus these structures

were not included in the MCNP model.2,3  Various variance-reduction methods were employed for the

different experimental geometries.  To compare with the published experimental fission rates, the

contributions from the inner left and right foil positions (see Fig. 1) were summed and the contributions

from the outer left and right foil positions were summed.  These two sums were then averaged and

multiplied by 4_r2, where r is the average radius of the foil positions in cm.  F2 tallies for the flux

through a surface at each foil location were multiplied by the appropriate fission cross section as a

function of neutron energy using the FM tally option in MCNP.

For the current calculations, the ENDF60 neutron-data library based on ENDF/B-VI was used for

most of the material specifications for the transport calculations.  Exceptions were the use of the

ENDL92 data for platinum, and the ENDF/B-V data of ENDF5U for cadmium.  Table 1 lists the specific

data libraries used in the fission-rate calculations for each isotope of interest.  Figure 2 shows the

neutron-flux spectrum at the foil locations for the bare sphere (bare), bare sphere with cadmium-covered

fission chambers (Cd), water-moderated sphere (H2O), and water-moderated sphere with cadmium-

covered chambers (H2O + Cd) for the 2-in. radius sphere experiments.  In Fig. 2, the curves for the bare

and cadmium-covered fission chambers overlap.  The total absorption cross section for cadmium is

shown in Fig. 3.
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Table 1.  Data used for the response fission rate calculations in MCNP

Isotope
ENDF/B-V
Release 2

ENDF/B-VI
Release 2
(ENDF60) ENDL92

LLLDOS
(ACTL)

235U 92235.50c 92235.60c 92235.42c 92235.30y
238U 92238.50c 92238.60c 92238.42c 92238.30y

237Np  93237.55ca 93237.60c 93237.42c 93237.30y
239Pu 94239.55c 94239.60c 94239.42c 94239.30y

aLANL evaluation, not ENDF/B-V.

Fig. 2.   Neutron flux spectra for the 5.08-cm (2-in.)-sphere experiments at the response
foil locations.
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Fig. 3.  Total absorption cross section for cadmium from ENDF/B-V.

3.1. COMPARISON TO PREVIOUS ENDF/B-V RESULTS

First, the results from the experiments and original calculations1 are compared with the current

results for the same ENDF/B-V response fission cross sections and are given in Table 2.  The original

calculations were performed using ENDF/B-V data for the neutron transport, with ENDL85 for platinum.

As described in the previous section, the current calculations are based primarily on ENDF/B-VI data for

neutron transport.  The results in Table 2 for both the original and current MCNP calculations use the

same ENDF/B-V data for calculating the response fission rates at the foil positions for 235U, 238U, 237Np,

and 239Pu and the same 45-group NIST 252Cf source specification.  From these results no clear pattern

emerges.  The average C/E ratio for the original calculations was 0.977, with an average deviation of

0.032.  The average C/E ratio for the current calculations was also 0.977, with an average deviation of

0.033.  Similar behavior was observed for each nuclide of interest; there were no appreciable differences

between the original and current calculations.
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3.2. CURRENT MCNP CALCULATIONS

Simulations of the NIST experiments were performed using ENDF/B-V, ENDF/B-VI (ENDF60),

ENDL92, and LLLDOS data to calculate the responses (i.e., fission-reaction rates for 235U, 238U, 237Np,

and 239Pu).  For these MCNP calculations, the ENDF/B-VI data of the ENDF60 neutron-data library

(with ENDF/B-V for Cd and ENDL92 for Pt) were used for the neutron transport.  The source

specification was a continuous Watt fission spectrum for 252Cf, described in Appendix H of the MCNP

manual, having a = 1.025 MeV and b = 2.926 MeV-1.  Tables 3–6 list the results for 235U, 238U, 237Np, and

239Pu, respectively.

Overall, the data libraries did well in matching experiment for 235U.  The MCNP results for

ENDF/B-VI consistently underpredict the experiment compared with the ENDF/B-V data for the bare

and Cd experiments.  The same behavior is observed for the ENDL92 data relative to the LLLDOS data.

The ENDF/B-V and B-VI data gave similar results for the water-moderated systems and underpredict the

experiment relative to the LLNL-based data (i.e., ENDL92 and LLLDOS).  The worst results relative to

the experiment are for the smaller water-filled spheres and 1.5-in. water + Cd sphere experiment.
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Table 2. Comparison of original (ENDF/B-V) and current (ENDF/B-VI) transport calculations
with experiment

(For the same ENDF/B-V response fission cross sections and the same NIST Cf-source spectrum)

NIST Original Current 
Radius Experiment MCNP MCNP

Isotope Configuration (mm) (in.) (barns) REa C/E RE  C/E RE

235U bare 38.1 1.5 1.278 0.016 1.009 0.019 1.006 0.016
bare 50.8 2 1.279 0.016 1.009 0.019 1.006 0.016
bare 63.5 2.5
Cd 38.1 1.5 1.288 0.018 1.004 0.021 1.004 0.018
Cd 50.8 2 1.291 0.018 1.002 0.020 1.003 0.018
Cd 63.5 2.5
H2O 38.1 1.5 19.6 0.017 1.010 0.023 1.046 0.019
H2O 50.8 2 45.7 0.017 1.044 0.020 1.020 0.017
H2O 63.5 2.5 72.2 0.017 1.022 0.023 1.042 0.017
H2O + Cd 38.1 1.5 4.18 0.017 1.024 0.023 1.037 0.017
H2O + Cd 50.8 2 5.51 0.017 1.049 0.029 1.022 0.017
H2O + Cd 63.5 2.5 5.86 0.017 1.109 0.026 1.048 0.017

238U bare 38.1 1.5 0.332 0.017 0.946 0.021 0.945 0.017
bare 50.8 2 0.334 0.017 0.940 0.020 0.940 0.017
bare 63.5 2.5
Cd 38.1 1.5 0.333 0.018 0.940 0.022 0.936 0.018
Cd 50.8 2 0.334 0.018 0.937 0.021 0.934 0.018
Cd 63.5 2.5
H2O 38.1 1.5 0.228 0.018 0.961 0.025 0.945 0.018
H2O 50.8 2 0.199 0.018 0.935 0.020 0.944 0.018
H2O 63.5 2.5 0.172 0.018 0.942 0.021 0.950 0.018
H2O + Cd 38.1 1.5 0.228 0.019 0.934 0.020 0.919 0.019
H2O + Cd 50.8 2 0.199 0.019 0.930 0.027 0.928 0.019
H2O + Cd 63.5 2.5 0.171 0.019 0.953 0.024 0.941 0.019

237Np bare 38.1 1.5 1.419 0.018 0.968 0.021 0.969 0.018
bare 50.8 2 1.42 0.018 0.968 0.020 0.969 0.018
bare 63.5 2.5
Cd 38.1 1.5 1.427 0.019 0.961 0.022 0.962 0.019
Cd 50.8 2 1.427 0.019 0.963 0.021 0.962 0.019
Cd 63.5 2.5
H2O 38.1 1.5 0.987 0.018 0.977 0.019 0.967 0.018
H2O 50.8 2 0.873 0.018 0.953 0.020 0.954 0.018
H2O 63.5 2.5 0.761 0.018 0.930 0.021 0.938 0.018
H2O + Cd 38.1 1.5 1.011 0.019 0.936 0.020 0.927 0.019
H2O + Cd 50.8 2 0.877 0.019 0.932 0.024 0.936 0.019
H2O + Cd 63.5 2.5 0.748 0.019 0.952 0.022 0.945 0.019

239Pu bare 38.1 1.5 1.916 0.015 0.970 0.018 0.969 0.015
bare 50.8 2 1.924 0.015 0.967 0.017 0.965 0.015
bare 63.5 2.5
Cd 38.1 1.5 1.934 0.018 0.964 0.021 0.964 0.018
Cd 50.8 2 1.931 0.018 0.966 0.020 0.966 0.018
Cd 63.5 2.5
H2O 38.1 1.5 36.7 0.015 1.011 0.027 1.019 0.015
H2O 50.8 2 82.3 0.015 1.038 0.020 1.007 0.015
H2O 63.5 2.5 125.5 0.015 1.010 0.021 1.029 0.015
H2O + Cd 38.1 1.5 5.34 0.019 0.983 0.036 1.040 0.019
H2O + Cd 50.8 2 7.04 0.019 0.959 0.034 0.984 0.019
H2O + Cd 63.5 2.5 7.74 0.019 0.969 0.031 0.977 0.019

a The relative error or fractional standard deviation in the Monte Carlo results.
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Table 3.  Comparison of MCNP calculations with various 235U fission cross sections to NIST
experimental measurements

(For the same ENDF/B-VI transport calculation and the same Watt Cf fission spectrum)

Radius ENDF/B-V ENDF/B-VI ENDL92 LLLDOS
Configuration (mm) (in.) C/E REa C/E RE C/E RE C/E RE

bare 38.1 1.5 0.997 0.016 0.981 0.016 0.985 0.016 0.995 0.016
bare 50.8 2 0.996 0.016 0.981 0.016 0.985 0.016 0.994 0.016
bare 63.5 2.5
Cd 38.1 1.5 0.994 0.018 0.978 0.018 0.982 0.018 0.991 0.018
Cd 50.8 2 0.992 0.018 0.977 0.018 0.981 0.018 0.990 0.018
Cd 63.5 2.5
H2O 38.1 1.5 0.950 0.017 0.952 0.017 0.964 0.017 0.956 0.017
H2O 50.8 2 0.944 0.018 0.947 0.018 0.960 0.018 0.957 0.018
H2O 63.5 2.5 0.978 0.020 0.982 0.020 0.995 0.020 0.992 0.020
H2O + Cd 38.1 1.5 0.947 0.025 0.931 0.025 0.951 0.024 0.948 0.024
H2O + Cd 50.8 2 0.980 0.021 0.974 0.021 0.988 0.021 0.988 0.021
H2O + Cd 63.5 2.5 0.996 0.022 0.985 0.022 1.002 0.021 1.002 0.022

a The relative error or fractional standard deviation in the Monte Carlo results.

Table 4.  Comparison of MCNP calculations with various 238U response fission cross sections to
NIST experimental measurements

(For the same ENDF/B-VI transport calculation and the same Watt Cf fission spectrum)

Radius ENDF/B-V ENDF/B-VI ENDL92 LLLDOS
Configuration (mm) (in.) C/E REa C/E RE C/E RE C/E RE

bare 38.1 1.5 1.024 0.017 1.024 0.017 1.053 0.017 1.053 0.017
bare 50.8 2 1.017 0.017 1.018 0.017 1.047 0.017 1.047 0.017
bare 63.5 2.5
Cd 38.1 1.5 1.015 0.018 1.016 0.018 1.045 0.018 1.045 0.018
Cd 50.8 2 1.012 0.018 1.013 0.018 1.042 0.018 1.041 0.018
Cd 63.5 2.5
H2O 38.1 1.5 1.047 0.018 1.048 0.018 1.078 0.018 1.078 0.018
H2O 50.8 2 1.054 0.018 1.054 0.018 1.083 0.018 1.083 0.018
H2O 63.5 2.5 1.064 0.018 1.065 0.018 1.095 0.018 1.094 0.018
H2O + Cd 38.1 1.5 1.052 0.021 1.053 0.021 1.083 0.021 1.082 0.021
H2O + Cd 50.8 2 1.017 0.021 1.018 0.021 1.046 0.021 1.046 0.021
H2O + Cd 63.5 2.5 1.035 0.022 1.036 0.022 1.065 0.022 1.065 0.022

a The relative error or fractional standard deviation in the Monte Carlo results.
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The MCNP calculations consistently overpredict the fission rates for 238U for all four data

libraries.  The new ENDF/B-VI evaluation for 238U did not change the MCNP calculations relative to

ENDF/B-V results.  The LLNL-based data of ENDL92 and LLLDOS gave equivalent results.

The ENDF-based data more closely matched experiment for all experimental configurations.  The worst

results are for the water-filled spheres.

Table 5.  Comparison of MCNP calculations with various 237Np fission cross sections to NIST
experimental measurements

(For the same ENDF/B-VI transport calculation and the same Watt Cf fission spectrum)

Radius ENDF/B-V ENDF/B-VI ENDL92 LLLDOS
Configuration (mm) (in.) C/E RE C/E RE C/E RE C/E RE

bare 38.1 1.5 1.000 0.018 0.986 0.018 0.967 0.018 0.968 0.018
bare 50.8 2 0.999 0.018 0.986 0.018 0.967 0.018 0.967 0.018
bare 63.5 2.5
Cd 38.1 1.5 0.992 0.019 0.979 0.019 0.960 0.019 0.961 0.019
Cd 50.8 2 0.993 0.019 0.979 0.019 0.961 0.019 0.962 0.019
Cd 63.5 2.5
H2O 38.1 1.5 1.029 0.018 1.015 0.018 1.012 0.018 1.013 0.018
H2O 50.8 2 1.020 0.018 1.007 0.018 1.012 0.018 1.013 0.018
H2O 63.5 2.5 1.020 0.018 1.006 0.018 1.017 0.019 1.018 0.019
H2O + Cd 38.1 1.5 1.007 0.021 0.994 0.021 0.990 0.021 0.991 0.021
H2O + Cd 50.8 2 0.996 0.020 0.982 0.020 0.990 0.020 0.991 0.020
H2O + Cd 63.5 2.5 1.014 0.020 1.001 0.020 1.012 0.020 1.013 0.020

The ENDF/B-VI results for 237Np consistently underpredicted the experiment for the bare sphere

and cadmium measurements, and were consistently lower than the ENDF/B-V results.  The ENDF/B-VI

results for the water-moderated spheres more closely matched experiment relative to the ENDF/B-V

results.  The ENDL92 and LLLDOS results were equivalent, yet farther from the experiment results for

both the bare-sphere and cadmium measurements relative to ENDF.
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Table 6.  Comparison of MCNP calculations with various 239Pu response fission cross sections
to NIST experimental measurements

(For the same ENDF/B-VI transport calculation and the same Watt Cf fission spectrum)

Radius ENDF/B-V ENDF/B-VI ENDL92 LLLDOS
Configuration (mm) (in.) C/E RE C/E RE C/E RE C/E RE

bare 38.1 1.5 0.967 0.015 0.965 0.015 0.955 0.015 0.960 0.015
bare 50.8 2 0.963 0.015 0.961 0.015 0.951 0.015 0.956 0.015
bare 63.5 2.5
Cd 38.1 1.5 0.961 0.018 0.959 0.018 0.949 0.018 0.954 0.018
Cd 50.8 2 0.963 0.018 0.961 0.018 0.951 0.018 0.957 0.018
Cd 63.5 2.5
H2O 38.1 1.5 0.919 0.016 0.925 0.016 0.941 0.016 0.936 0.016
H2O 50.8 2 0.926 0.017 0.932 0.017 0.952 0.017 0.956 0.017
H2O 63.5 2.5 0.953 0.019 0.959 0.019 0.981 0.019 0.984 0.019
H2O + Cd 38.1 1.5 0.918 0.033 0.919 0.033 0.923 0.032 0.974 0.027
H2O + Cd 50.8 2 0.983 0.026 0.975 0.026 0.980 0.025 0.992 0.022
H2O + Cd 63.5 2.5 0.919 0.026 0.911 0.026 0.932 0.025 0.979 0.022

a The relative error or fractional standard deviation in the Monte Carlo results.

The results for 239Pu were remarkably similar for the four data libraries.  The MCNP calculations

consistently underpredict the measurements, particularly for the water-moderated spheres.
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4. APPLICATION OF GLLSM TOOLS TO

NIST WATER SPHERES

The results shown in the previous section are not uncommon when detailed comparisons of

measured and calculated values are performed using multiple-source spectra and cross-section sets.  The

wide variation in the predicted C/E values indicates a substantial amount of uncertainty that is not

properly accounted for in the experimental and Monte Carlo uncertainties alone.  To properly understand

these results, the quantification and/or inclusion of each of the uncertainty effects needs to be achieved.

For this task, a subset of the complete results shown in the previous section is selected.  The ENDF/B-V

transport and fission cross sections, along with the NIST-supplied fission spectrum, are used in this

portion of the analysis.  The selection of ENDF/B-V was primarily due to the availability of cross-section

uncertainty information for the major cross-section constituents.  Although the Monte Carlo uncertainties

could have been explicitly included, if desired, we preferred to reduce them.  The results were

recalculated with a higher degree of precision (i.e., smaller Monte Carlo standard deviations), such that

the code uncertainties could be ignored in comparison with the remaining uncertainties.

The measured values of the average fission cross sections, for each of the “wet” configurations,

are repeated in Table 7, alongside their respective relative experimental uncertainties.  These

uncertainties are correlated, of course, and the correlations will be considered in some of the analyses.

The calculated values were obtained by MCNP using ENDF/B-V cross sections and the same detailed

model of the water spheres used previously.  The calculated values and their corresponding relative

uncertainties, reflecting the propagated cross-section uncertainties,12 are also shown in Table 7.  The last

two columns of Table 7 are the combined relative uncertainty of the deviation of the corresponding

measured and calculated values and the respective “individual χ 2.”  This quantity is a measure of the

consistency of a particular experimental value with its corresponding calculated value reflecting all

relevant uncertainties and preferably should be close to unity.  The entries in Table 7 are organized as
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groups of six measurements of the same reaction rate.  Within each group, the first three entries are of

measurements with uncovered fission foils and the last three of cadmium-covered foils.  In each subgroup

of three measurements, the entries are arranged according to increasing water-sphere diameters of 3-, 4-

and 5-in. (radii of 3.81, 5.08, and 6.35 cm), respectively.  The content of Table 7 is also represented

graphically in Figs. 4 and 5.

In Fig. 4, the relative deviations of the calculated from the measured values are represented as

diamonds for each of the 24 experiments.  The band of the relative experimental uncertainties is depicted

by the dashed green curves and the corresponding bands of the calculated and total relative uncertainties

are represented by the blue and purple curves, respectively.  Most relative deviations of the measured and

calculated 239Pu average cross-section values (entries 7–12) are within their respective experimental

uncertainty and all of them are within their corresponding calculated uncertainty and are thus consistent.

Although all the 237Np relative deviations (entries 19–24) are outside their experimental uncertainty band

they are still consistent due to the high uncertainty of the 237Np-fission cross section.  As to 238U (entries

13–18), not a single measurement is consistent with its calculated value.  One should further notice that

all the Cd covered 235U values (entries 4–6) are also individually not consistent.  All these observations

can clearly be seen in Figure 5 in which the individual χ 2 are plotted for each measurement.

In the analyses of more than a single measurement of the same type, even if the individual

experimental uncertainties are not correlated, the calculated values are usually correlated.  Since all the

above measurements are related to each other, at least by the computational model and by the cross

sections, and also via the use of the same experimental techniques, a joint consistency test is called for

rather than looking only at the individual χ 2 values.  The joint consistency analysis is the subject of the

next section.
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Table 7.  Various measured and calculated average fission cross sections outside NIST water
spheres driven by a central 252Cf spontaneous fission neutron source

N
Response

< σ f >

Water
radius
(cm)

Exp.
value

(barns)

Exp.
unc.
(%)

Cal. value
(barns)

Cal.
unc. (%)

(E-C)/C
unc. (%) Individuala χ 2

1 235U 3.81 19.6 1.7 20.40 2.41 2.95 1.77

2 235U 5.08 45.7 1.7 46.68 2.19 2.77 0.58

3 235U 6.35 72.2 1.7 72.23 1.99 2.62 0.00

4    235U b 3.81 4.18 1.7 4.404 2.59 3.09 2.70

5    235U b 5.08 5.51 1.7 5.774 2.66 3.16 2.10

6    235U b 6.35 5.86 1.7 6.104 2.65 3.15 1.61

7 239Pu 3.81 36.7 1.5 37.28 2.43 2.86 0.30

8 239Pu 5.08 82.3 1.5 82.61 2.21 2.67 0.02

9 239Pu 6.35 125.5 1.5 124.2 2.03 2.53 0.17

10    239Pu b 3.81 5.34 1.9 5.183 3.53 4.01 0.57

11    239Pu b 5.08 7.04 1.9 6.935 3.73 4.18 0.13

12    239Pu b 6.35 7.74 1.9 7.728 3.80 4.25 0.00

13 238U 3.81 0.228 1.8 0.2127 2.06 2.74 6.90

14 238U 5.08 0.199 1.8 0.1847 2.10 2.77 7.82

15 238U 6.35 0.172 1.8 0.1600 2.15 2.81 7.14

16    238U b 3.81 0.228 1.9 0.2114 2.07 2.81 7.83

17    238U b 5.08 0.199 1.9 0.1846 2.11 2.84 7.56

18    238U b 6.35 0.171 1.9 0.1599 2.15 2.87 5.84

19   237Np 3.81 0.987 1.8 0.9436 9.11 9.28 0.25

20   237Np 5.08 0.873 1.8 0.8182 9.06 9.24 0.53

21   237Np 6.35 0.761 1.8 0.7038 9.02 9.19 0.78

22     237Np b 3.81 1.011 1.9 0.9440 9.12 9.32 0.58

23     237Np b 5.08 0.877 1.9 0.8200 9.09 9.28 0.56

24     237Np b 6.35 0.748 1.9 0.7019 9.05 9.24 0.50
a Defined as the square of the ratio of (E-C)/C to its uncertainty.
b Cd-covered fission foil.
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Fig. 4. The relative deviations and uncertainties of measured (E) from calculated (C)
average fission cross sections outside NIST water spheres driven by a central 252Cf spontaneous
fission neutron source.

0

3

6

9

1 3 5 7 9 11 13 15 17 19 21 23
Ν

χ2χ2 χ2χ2

Fig. 5. Individual chi square values for various measured and calculated average fission
cross sections measured outside NIST water spheres driven by a central 252Cf spontaneous fission
neutron source.
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4.1. JOINT CONSISTENCY ANALYSIS

The joint consistency of measured integral responses and their calculated values, depending on

differential parameters, is intimately related to the so-called generalized-least-squares “adjustment”13

(denoted GLLSM).  Whether one places confidence in the parameter adjustment methodology, or not, an

intelligent comparison of measured and calculated responses, depending on differential parameters, calls

for the same procedure of using the respective, correlated, uncertainty data and all the relevant

sensitivities of the responses to the parameters.

Figure 6 represents the results of an adjustment procedure, taking into account all measurements

listed in Table 7.  Here again the diamonds represent the relative deviations of the calculated values from

their respective measured responses, (E-C)/C.  The solid squares denote the relative deviations of the

GLLSM-based adjusted values from the respective measured values, (E-A)/C.  The experimental

uncertainty band is denoted by the dashed green curves.  In Fig. 6 we assume that all the measurement

uncertainties are not correlated.  The resulting uncertainty of each adjusted response (inner purple curve

pair) is always less than or equal to the original experimental uncertainty and the corresponding

uncertainty related to the calculation reflecting the propagated parameter uncertainty (outer blue curve

pair).  Note that in Fig. 6 all the adjusted responses are within the experimental uncertainty of the

original experimental values.

Although only the total relative uncertainty is reported in the formal documentation of the

measurements, the experimenters provided14 estimates of the contributions of the various uncertainty

sources to the total relative uncertainty.  The contribution of the 252Cf-source intensity to the total relative

uncertainty of the average cross sections (reaction rates) is estimated as 1.2% and is common to all

measurements.  The contribution of the uncertainty in the geometry, which is also common to all

measurements, contributes 0.3% for the “dry” (without the water) case and slightly more for the “wet“

case.  The mass assay uncertainty contributes 0.5%, 0.5%, 1.0% and 1.0% in the case of 235U, 239Pu, 238U

and 237Np reference foils, respectively, and slightly more for other foils.  In order to see the effect of the
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correlations between measurements, rather than calculating the individual covariance between any two

measurements, we assumed the same covariance of 1.334%2 (i.e., 1.78E-4 between any two

measurements).  This value is the combination of 1.2%2 + 0.3%2 + 0.5%2, which are independent

uncertainty sources common to all measurements.  The results of an adjustment taking into account all

the measured values and their correlation are shown in Fig. 7.  Unlike the results of the adjustment

described in Fig. 6, only three adjusted values lie now in the central (“adjusted”) uncertainty band.  Most

adjusted values differ now from their respective original measured values by more than the respective

experimental uncertainty, and the 238U values lie even outside the calculation uncertainty band.

NIST WATER SPHERES
(no correlations, all active)
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Fig. 6.   The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a 252Cf
spontaneous fission neutron source.
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NIST WATER SPHERES
(rel. cov.=1.78-4, all active)
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Fig. 7. The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a central 252Cf
spontaneous fission neutron source.  All measurements are correlated with each other.

Figures 8 and 9 show the results of an adjustment campaign where only the uncovered 3-in.

measurements determine the adjustment (i.e., entries 1, 7, 13 and 19).  For all other measurements, the

“adjusted” values were obtained by shifting the original calculated values according to the resulting

cross-section adjustment and the respective sensitivities.  In Fig. 8 no experimental correlation was

considered, and in Fig. 9 the same relative covariance of 1.334%2 was used for all measured values.  In

both cases, it can be seen that the adjustment was quite effective for all measurements, although only one

measurement, for each group of six, was active in the process.
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NIST WATER SPHERES 
(no correlations, only 1,7,13,19 active)
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Fig. 8. The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a central 252Cf
spontaneous-fission neutrons source.  (Only four measurements actively participated in the
adjustment.)

NIST WATER SPHERES 
(rel.cov. = 1.78-4, only 1,7,13,19 active)
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Fig. 9. The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a central 252Cf
spontaneous-fission neutron source.  (Only four measurements actively participated in the
adjustment.  All measurements are correlated.)
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Since the adjustment with only four measurements, one for each type of fission foil, was so

effective, an attempt to perform an adjustment with only one active measurement was made.  The results

of this adjustment are shown in Fig. 10.  Only measurement No. 1 (i.e., 235U fission outside the 3-in.

water sphere) was active in the adjustment process.  This adjustment is not as successful as the previous

one (i.e., Fig. 9) even for the other 235U fission measurements.  Whereas in Fig. 9 only one 235U value is

clearly outside the experimental uncertainty band, in Fig. 10 four out of six fall outside.

NIST WATER SPHERES 
(rel. cov. = 1.78-4, only #1 active)
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Fig. 10.   The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a central 252Cf
spontaneous-fission neutron source.  (Only one measurement actively participated in the
adjustment.  All measurements are correlated.)
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The effectiveness of the adjustment process is demonstrated very clearly in Figs. 11 and 12.  For

each type of fission foil, the measurements outside the 3- and 5-in. water spheres were used for the

adjustment process.  The 4-in. measurements were modified only via the results of the adjustment

utilizing the respective sensitivities.  In Fig. 11, no correlation between the measurements was assumed,

and in Fig. 12 these correlations were considered.  Taking these correlations into account resulted in only

three adjusted values within the central uncertainty band (A-unc), in contrast to half of the points in the

case without the correlations, Fig. 11.

NIST WATER SPHERES 
(no correlations, 4-in. measurements deactivated)
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Fig. 11.   The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by 252Cf
spontaneous-fission neutrons at their center.  (All measurements of the intermediate sphere did not
actively participate in the adjustment.)



23

NIST WATER SPHERES
 (rel. cov. = 1.78-4, 4-in. measurements deactivated)
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Fig. 12.   The relative deviations and uncertainties of calculated (C) and adjusted (A) from
measured (E) average fission cross sections outside NIST water spheres driven by a central 252Cf
spontaneous-fission neutron source.  (All measurements of the intermediate sphere did not actively
participate in the adjustment.  All measurements are correlated.)

4.2. QUALITATIVE COMPARISON OF GLLSM PREDICTED DATA
CHANGES WITH RATIONAL EXPECTATIONS

In the preceding section, the GLLSM procedure was referred to as a data-adjustment technique.

Indeed, the results of the GLLSM procedure produce suggestions for data changes consistent with the

data, with the measurements and with the calculations.  The results reported thus far have given insight

into the nature of the calculated-vs-measured differences, specifically identifying that the 238U data have

discrepancies that are not accounted for by the corresponding calculational and measurement

uncertainties.  The GLLSM data adjustments, in the cross sections and source spectrum, will now be

qualitatively analyzed via a comparison of the trends seen in the measured-vs-calculated values.

The dry C/E values of the average cross sections for the four fissionable materials depend

primarily on the representation of the source fission spectrum and the respective fission cross sections.  It
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is thus possible to suggest the hardness or softness of the input source spectrum.  This prediction is

possible because two of the materials (238U and 237Np) have threshold-fission cross sections, while the

other two (235U and 239Pu) have approximately flat fast-fission cross sections.  Since the calculations in

Sect. 3 of this report show that ENDF/B-VI and ENDF/B-V transport solutions produce approximately

the same C/E values, the C/E values in Table 2 (based on ENDF/B-VI or ENDF/B-V transport and

ENDF/B-V response fission cross sections) can be compared with corresponding values in Tables 3–6

(based on ENDF/B-VI transport and various response fission cross sections). The bare-sphere C/E values

for 238U and 237Np are 0.94 and 0.96 (see Table 2), while they are 1.01–1.02 and 1.00, respectively, in

Tables 4–5.  The only difference between these values is in the input source spectrum, the former is

based on the NIST-supplied 252Cf spontaneous fission spectrum, and the latter is based on a Watt fission

spectrum from the MCNP manual.  The Watt spectrum is harder than the NIST spectrum and produces

results more consistent with the measurements.  The two spectra are displayed in Fig. 13, along with the

suggested adjusted spectrum.  Clearly, the adjusted spectrum is harder than the original NIST-supplied

spectrum.  However, the source spectrum should not move completely to the MCNP-252Cf spontaneous-

fission Watt spectrum, since one and the same source spectrum cannot give the correct reaction rates for

the various isotopes fission cross sections with their varying energy dependence.

The resulting inability of the suggested source changes to correct the underprediction of the 238U

fission reactions necessitates an increase in the fission cross sections, particularly at high energies.  The

GLLSM predicts an increase in the 238U fission cross sections in the MeV range of 3 to 8%.

Underpredictions for the 239Pu and 237Np fission reaction rates for the bare cases shown in Table 2 also

give rise to increases in the corresponding fission cross sections in the high-energy range around 1 MeV.

Increases of 0.4 to 1.6% are predicted for 239Pu-fission cross sections over the entire energy range, while

increases of 2 to 5% are indicated for 237Np.
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Fig. 13.  Comparison of NIST-supplied, LANL continuous energy, and adjusted fission
spectra for 252Cf .

Another trend that is evident from the results seen in Tables 2–6 is the increase in the predicted

C/E values with an increase in the water-sphere diameter.  This trend was initially attributed to hydrogen-

scattering problems; however, note that these trends are largely absent in Table 2, which is based on the

45-group NIST spectrum.  The trends are clearly seen in all but 237Np in Tables 3–6, which are based on

the MCNP 252Cf spontaneous-fission Watt spectrum.  Thus, it can be argued that the effect is due to the

same hardness in the fission spectrum, not a problem with the hydrogen scattering.  The GLLSM results

tend to confirm this in that the predicted changes in the hydrogen-scattering cross section (about 0.4%
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over the entire energy range) amount to only a 0.2% change in the calculated fission responses, not

enough to account for the observed trends.

These GLLSM results, thus far, are based on only the wet cases.  Analyses adding the dry results

are planned in the future.  However, a preliminary calculation was performed to assess potential

differences between the wet and dry cases.  Results show that, in general, the wet and dry cases predict

the same spectral changes.  Thus, these results are thought to be representative of the dry cases even

though they are not included in the analysis.

The accuracy of the magnitudes for GLLSM-predicted changes cannot be gauged by looking at

the intuitive nature of the C/E values; however, qualitatively the predicted changes seem to be in the right

direction.
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5. SUMMARY AND CONCLUSIONS

The NIST fission reaction-rate measurements were described in Sect. 2.  In the analysis of the

NIST fission reaction rate measurements, it is important to explicitly specify the data used for the

description of the driving 252Cf spontaneous fission source, the description of the materials through which

the neutrons traverse and the response fission foils.  A comparison of MCNP results published previously

with the current MCNP simulations, in Sect. 3, using the same NIST fission source representation and the

same fission foil cross-section data, showed no appreciable differences between using the ENDF/B-V or

ENDF/B-VI data for the neutron transport.  However, the results are quite sensitive to the representation

of the source fission spectrum.

For 235U, the water-moderated spheres underpredicted the fission rate by more than the bare

sphere experiments.  For 238U, the water-moderated spheres overpredicted the fission rate by more than

the bare sphere experiments.  The ENDF-based results were closer to the measured values by 3% than the

LLNL-based results for 238U.  The results for the bare-sphere experiments for 237Np indicate that the

ENDF/B-V data were closest to the measurement, followed by the ENDF/B-VI data.  The LLNL-based

data for 237Np underestimated the fission rate for the bare-sphere experiments the most.  All of the data

libraries did a good job of calculating the water-moderated spheres for 237Np.  The bare-sphere

experiments were underestimated by all the data libraries for 239Pu (4 to 5%), and the water-moderated

sphere experiments were underestimated by a greater amount on average for ENDF-based and ENDL92

data.  The LLNL dosimetry data only underestimated the fission rate an average of 3%.

The “wet” measurements of the NIST water spheres were analyzed using the GLLSM procedures

under various assumptions.  The consistency analysis indicated that the 238U and, to a much lesser extent,

the 235U calculated and measured data were inconsistent with each other.  The least-squares approach did

indeed narrow the deviation between the measured and calculated responses and decreased the

uncertainties.  A qualitative comparison of the least-squares-predicted cross-section changes vs the
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physical implication of the C/E values indicates that the predicted changes are intuitively in the correct

direction.

Future work will consider the inclusion of the “dry” measurements in the adjustment procedure

of the NIST water spheres and a test of the effect of the incorporation of all the data into the criticality

safety GLLSM package.  Due to the findings of the sensitivity of the reported results to the source

spectrum, further work is planned on a comparison of the NIST-values, the MCNP-Watt values, and the

actual measured values.  Additionally, a better estimate of uncertainties in the 252Cf spectrum values will

be pursued.
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