Getting Started with SCALE 6.1

INTRODUCTION 2
SYSTEM REQUIREMENTS 6
INSTALLATION INSTRUCTIONS 7
BUILD INSTRUCTIONS 11
OVERVIEW 11
CMAKE CONFIGURATION 12
COMPILATION 14
INSTALLATION 14
RUNTIME ENVIRONMENT 15
RUNNING SCALE 15
EXAMPLE INVOCATION 17
SCALE SAMPLE PROBLEMS 18
SCALE VARIABLES 20



Introduction

The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system
developed at Oak Ridge National Laboratory provides a comprehensive, verified and
validated, user-friendly tool set for criticality safety, reactor physics, spent fuel
characterization, radiation shielding, and sensitivity and uncertainty analysis. Since
1976, regulators, licensees, and research institutions around the world have used
SCALE for safety analysis and design. SCALE provides a “plug-and-play” framework
with nearly 80 computational modules, including three deterministic and three
Monte Carlo radiation transport solvers that are selected based on the desired
solution. SCALE’s graphical user interfaces assist with accurate system modeling
and convenient access to desired results. SCALE 6.1 provides improved reliability
and introduces a number of enhanced features in a robust yet user-friendly package
that are intended to improve safety and efficiency throughout the nuclear
community.

CRITICALITY SAFETY

The KENO Monte Carlo neutron transport codes for eigenvalue problems have
realized a number of enhancements for SCALE 6.1. The mesh flux and fission source
accumulator used in TSUNAMI-3D sensitivity analysis sequences and in criticality
accident alarm system analysis has been improved with more flexibility in the user
definition of mesh intervals and better mesh volume calculations, mesh tracking,
and output edits. Mesh fission source data can now be generated using KENO V.a or
KENO-VI in multigroup or continuous-energy mode, and the fission distribution can
be visualized with the MeshView tool, as shown in Fig. 1. Default criticality search
parameters have been modified to provide improved convergence to true minimum
or maximum values, and region mean free paths can now be computed in
continuous-energy mode.

X| Mesh File Viewer - case01.fissi
ontours Data Error Help

4.236-06 - 5.666-06
3.16E-06 - 4.236-06

06

0.0

i |
100
|| Scale ——— soem

[ .87, 16.81, 10.00) [085.6  [aeon [7.66737606  [1.00mse-07  [o.025

Fig. 1. Mesh fission source from KENO V.a visualized in MeshView.



SHIELDING ANALYSIS

The MAVRIC shielding analysis capabilities with automated variance reduction
capabilities, first introduced with SCALE 6.0, have realized a number of
enhancements for their second release in SCALE 6.1. Multiple sources may now be
defined with spatial distributions defined within each source. Energy distributions
can be imported from an ORIGEN binary concentration file or from response
functions read from an AMPX cross-section file. MAVRIC also includes
improvements in the advanced variance reduction capabilities such as a macro
materials option for improved Denovo deterministic simulations used to generate
variance reduction parameters and increased flexibility in forward-weighting
strategies. Cylindrical mesh grids have been added to more accurately capture
spatial effects, as shown in Fig. 2, for a shielding calculation for a spent fuel shipping
cask, and a suite of MAVRIC utilities has been developed to postprocess data files.

g,

Dose(rem/hr)

-— 0.2200

—0.05712

.0.01483

—0.003851

. 0.001000

Fig. 2. MAVRIC spent fuel shipping cask model with a cylindrical mesh tally showing dose in rem/hr.
DEPLETION AND DECAY

The ORIGEN and COUPLE codes used for isotopic activation, depletion and decay
have been substantially improved for SCALE 6.1. Support is now provided for
multigroup cross-section libraries in any group structure, ENDF/B-VII decay
libraries, and energy-dependent fission product yields. Cross-section transitions can
be included from multiple sources, including JEFF-3.0/A-based AMPX format
multigroup cross-section libraries developed for burnup and activation applications,
an AMPX library generated by one of the SCALE transport codes, and cross sections
input manually by the user via the input file.

REACTOR PHYSICS

The TRITON reactor physics capabilities have realized a number of enhancements
for SCALE 6.1. The KENO-based Monte Carlo depletion capabilities have been
substantially improved to more accurately compute power distributions and enable



all KENO functionalities such as source specification, region volume input, and
geometry plotting. TRITON was updated to use the improved multigroup
functionality of ORIGEN and COUPLE, and for clusters with multiple computing
nodes, branch calculations can now be run in parallel.

The two-dimensional (2D) generalized geometry lattice physics code NEWT was
enhanced with parallel operation, support for inhomogeneous sources for
generalized perturbation theory (GPT) calculations, improved support for high
temperature gas reactor prismatic geometries, and support for coupled n-gamma
calculations. Several corrections were also realized, including improved
unstructured course-mesh finite diffusion acceleration, grid generation algorithms,
results for few-group homogenized cross sections, and output edits.

SENSITIVITY AND UNCERTAINTY ANALYSIS

For SCALE 6.1 the TSUNAMI-3D adjoint-based sensitivity and uncertainty analysis
capabilities were enhanced through many of the previously described
improvements in the KENO mesh capabilities, and a new TSUNAMI-2D capability
was introduced using NEWT as the transport solver. In addition to generating the
sensitivity of kegand reactivity to the multigroup cross-section data, one-
dimensional and 2D capabilities were introduced for GPT calculations, expanding
the responses for which sensitivities and uncertainties can be computed to include
flux ratios, reaction rate ratios, and collapsed few-group cross sections. The
TSURFER data assimilation code for advanced bias and bias uncertainty assessment
was updated with improved output edits and plots.

NUCLEAR DATA

The SCALE nuclear data files have also been enhanced. For uranium and
plutonium isotopes in ENDF/B-VIL.8 and ENDF/B-VIIL.O continuous-energy cross
sections, the unresolved resonance region probability tables have been improved,
providing more accurate results, especially for intermediate energy systems.

The 238-group ENDF/B-VI.8 and ENDF/B-VII.0 neutron criticality libraries have
been updated with an improved weighting function in which the tie-in for the fission
spectrum has been raised from 67.4 to 820.8 keV. This adjustment improved the
performance of spectral calculations for very high temperature reactor simulations.
In addition, updated versions of AMPX routines using double precision throughout
the calculation were used for the library generation.

The ORIGEN data have been updated to include ENDF/B-VII decay and fission yield
libraries and JEFF multigroup neutron cross-section libraries in 44-, 47-, 49-, 200-,
and 238-group structures. The new decay library includes 2227 nuclides, including
174 actinides, 1149 fission products, and 904 structural activation materials.

GRAPHICAL USER INTERFACES

Many of the SCALE graphical user interfaces have been enhanced for SCALE 6.1.
Notably, the GeeWiz input interface for Windows now fully supports all major
SCALE computational sequences and provides a more stable and intuitive work



environment. The Javapefio data visualization package now supports plotting SCALE
continuous-energy data and ORIGEN data output from the OPUS module.



System Requirements
System Architecture:

e Linux 32bit and 64bit
e Darwin9and 10
e  Windows XP, Vista and 7

Required Memory:
Minimum of 2 GB, Recommended 4 GB of RAM
Minimum 30 GB available disk space

Java Requirements:
Javal.6

Java3D 1.5



Installation Instructions
SCALE 6.1 includes an installer that provides an interactive interface for full or
customizable installations.

To begin installation of SCALE 6.1 if you are on Windows, double-click the scale-6.1-
setup.jar file, if you are on Linux or Mac copy the scale-6.1-setup.jar to your local
disk and double-click the local version.

This will open an installer dialog.

S NON IzPack - Installation of scale

=/ Welcome to the installation of scale 6.1!
() This software is developed by:

- Oak Ridge National Laboratory <scalehelp@ornl.gov>
M| The homepage is at: http://scale.ornl.gov

{Made with IzPack - http://izpack.org/)

(Next) ( Quit

Please follow the steps by pressing 'Next'.

You will be prompted to choose the destination of your installation.



IzPack - Installation of scale

[ Select the installation path:
.
/scale/scale6.1 [ Browse... )

{Made with IzPack - http://izpack.org/)

\w

(" Previous ) ( Next ) € Quit

For Windows users, the recommended installation path is at any root
level(c:\scale6.1 ,d:\scale6.1, etc...)

This is highly recommended as the Windows graphical user interfaces GeeWiz,
OrigenArp, Keno3d and PlotOpus require scale to be installed at the root level.

For Linux and Mac systems, a typical location is /scale/scale6.1.

The installer will present a prompt to confirm the creation of a new directory, press
OK.

8.0.0 Message

@ The target directory will be created:
/scale/scale6.1

Cancel ) ( OK )

*If the installer prompts you that "C:\scale6.1" directory can not be created, click
browse, create the new folder "C:\scale6.1" and select it.

Once you select 'Next' it will prompt you that the directory already exists. Click 'Ok’
to overwrite the directory and click 'Next'.



The installer then presents all available options for installation. By default, SCALE
installs all available options. The only two required options are SCALE Binaries, the
executable files for SCALE, and SCALE Data, the data files for SCALE.

IzPack - Installation of SCALE

% Select the packs you want to install:
() Note: Grayed packs are required.

Windows 64bit Binaries 161.59 MBl—
Windows 32bit Binaries 132.96 MB
Linux 32bit Binaries 175.63 MB
Linux 64bit Binaries 245.25 MB
Darwin 10 Binaries 420.74 MB
Darwin 9 Binaries 429.61 MB
SCALE Commands 753 KB
Sample Problems 1.13 GB
Data 22.94 MB
ENDF/B-V Data 1.14 GB|
ENDF/B-VI Data 5.36 GBE
LM ENDE/R-MILData
Description

Step-by-step getting started guides for several key capabilities in SCALE

Total space Required: 24.03 GB
Available space: 326.35 GB

{Made with IzPack - http://izpack.org/)

( Previous ) ( Next ) ( Quit )

After selecting the desired options, press next to proceed.

If you are running on Linux or Mac you will be prompted to select ‘installer.pak’.
Please navigate to your DVD and select ‘installer.pak’ and proceed.



I1zPack - Installation of scale

¥ Pack installation progress:
/scale/scale6.1//Linux_i686/bin/runner

~SCALE Binaries
i Overall installation progress:
1/13
{Made with IzPack - http://izpack.org/)
{ pPrevione ) — ( el
[ Previous ) Next [ Quit )

The installer will post the progress of the installation. Part way through the
installation you will be prompted for 'installer.pak.1' please insert the PAK.1 disk
and click 'Apply’.

PAK.1 will complete and prompt for 'installer.pak.2' please insert the PAK.2 disk and
click 'Apply".

PAK.2 will finish and you have completed your installation of SCALE 6.1.

If you have any questions please contact scalehelp@ornl.gov

10



Build Instructions

These instructions are only for those who wish to recompile their SCALE binaries. If
you do not need to recompile your SCALE binaries please skip this section.

SCALE required the following programs in order to compile:

Intel Fortran 11.1+ compiler.

GNU g++/gcc 4.2+ compiler

Openmpi mpif90 compiled with Intel Fortran. (Only for Nix systems)
CMake - Platform independent build configuration.

B W N e

SCALE requires the following libraries:

1. Trilinos libraries:

a. Amesos
b. Anasazi
c. Aztecoo
d. Epetra
e. Epetraext
f.  Teuchos
g. Triutils

2. LAPACK libraries:
a. lapack
b. blas

SCALE RUNNER requires:

mpif90 compiled with ifort. You will need to download the openmpi source
code, recompile and configure the build process with the following:

./configure F90=ifort F77=ifort FC=ifort
If you are using 64bit, add 64bit flags to the other compilers.
Example:

./configure F90=ifort F77=ifort FC=ifort CC="gcc -m64" CXX="g++ -m64"

OVERVIEW
There are three main steps before you have SCALE binaries

1. CMake configuration - This generates a native build tree
2. Compilation - This compiles all executables and libraries
3. Installation - This deploys all executables into a configuration ready for running

11



CMake Configuration

Throughout SCALE you will find 'CMakeLists.txt' files. From the SCALE root
directory these CMakelLists.txt files create a tree of included directories called the
SOURCE TREE. Namely the source directories:

src/aim
bonami
scalelib

etc...

To configure you build you call 'cmake’ on the root CMakeLists.txt file, namely
scale_dir/CMakeLists.txt. CMake takes your source tree and creates a BUILD TREE.
The build tree contains or will contain your build configuration, Make or NMake
files, and all compilation output, i.e., object files, archive libraries and binary
executables.

SCALE requires several third party libraries (TPL).

Namely: Trilinos and Lapack. These TPL libraries and includes must be specified at
the time of configuration. For ease of use configuration scripts for every supported
platform are available in the 'scripts' directory of your checkout. These scripts
describe the necessary variables that need to be defined. A user’s modifications to
these scripts should be limited to the path to the root directories for the TPLs.

Recommended Configuration Procedure

After checking out the source code, navigate to the root scale directory. You should
see CMakeTPL.txt, CMakeLists.txt and CMakeConfig.txt. This is the root of the source
tree, what you will point CMake at. This example will demonstrate creating build
trees for multiple architectures for your working copy.

12



Make build directory
mkdir build

mkdir build/Linux_x86_64 **this could be any directory, | want to
emphasize multiple platform builds.

or

mkdir build/Windows_amd64 **for purposes of this example I will use
Linux_x86_64

CMake Initialization

Move the cmake script from the 'scripts’ directory to your build directory

cp scripts/linux_x86_64-cmake build/Linux_x86_64
chmod u+x build/Linux_x86_64/linux_x86_64-cmake

/** At this point your may need to update the TPL paths in this script **/

Create Your Configuration

Create your configuration by pointing this script at the source tree root

cd build/Linux_x86_64
./linux_x86_64-cmake ../..

/*** Configuration Output.... ***/

**Things to know are that if you add or remove source files from the
source tree, cmake will NOT see these modifications unless it modified a CMake
file(CMakeLists.txt,CMakeTPL.txt,CMakeConfig.txt...). CMake will re-evaluate the
entire source tree when any CMake file has been modified. If CMake does not pick
up the add/removal of sources files the easiest way to update your build tree is to
'touch' any CMake file in the source tree.

13



Compilation

Every library and executable is a TARGET. Calling 'make’, 'nmake' on windows, from
the root of your build tree, build/Linux_x86_64 from the previous example, will
build ALL targets. For building specific targets there are two methods.

For example mavricUtilities contains a number of executables: mtadder,
mtaverager, etc...

Either you may 'make mtadder' to build only mtadder or you can, from
build/Linux_x86_64, 'cd src/mavricUtilities' and 'make’ which will compile ALL
targets in mavricUtilities.

Compilation Flags

CMakeConfig.txt contains the logic for detecting the current platform and setting the
appropriate compilation flags for the ENTIRE build tree. You may modify
CMAKE_Fortran_FLAGS or CMAKE_C_FLAGS in CMakeConfig.txt, which results in a
global effect or you may set these variables on a per module basis.

Installation

CMake provides the 'install’' target, which installs all binaries from the current
directory down. For example 'make install' from build/Linux_x86_64 will install any
targets in src down, which would install aim, mavric, mtadder, mtaverager etc... You
can also 'cd src/aim' and make install will only install declared in the aim directory.

**Things to know are that 'make install' re-evaluated the build for all dependencies.
Take for example package A which depends on packages B and D. Package D
depends on package E. 'make install' for package A would result in packages E, D
and B being re-evaluated and rebuilt if necessary. Thus if you know you want to
build and install, you can save time building by simply doing a 'make install'.

14



Runtime Environment

The SCALE runtime environment scalerte has been re-written to be platform
independent and more self-aware. scalerte provides for easier setup and faster
methods to get started with SCALE 6.1, while keeping backwards compatibility with
previous practice. Written in C++ and XML to provide performance oriented,
versatile, and portable usage, it allows SCALE to be run in configurations previously
not available. This section describes the environment provided by scalerte, the
arguments available, and typical usage.

Running SCALE
* Note that Norton Antivirus may require an exception for scalerte.exe on Windows

The SCALE runtime environment provides several command line options. The
platform specific entry point into SCALE is the batch6.1 scripts: batch6.1 bash script
on Linux and Mac (Nix systems), and batch6.1.bat on Windows. The usage is as
follows.

batch6.1l [options] inputfile(s) [options] [inputfile(s)]

Where inputfile (s)are one or more files or file patterns (test.inp, or test*.inp,
etc.).

Where options are:
—a: Specify alias file.
-a path/to/aliasesfile
-d: Specify the SCALE driver directory, relative to SCALE
($SCALE\\YourDirectory).
-d dir/contains/binaries
-f: Add hostname to output filename. Produces inputfile.hostname.out
-h: Print this information as a help message
—TI: Number of threads to use for MPI/OpenMP directives. -1 4"
-m: Print information messages as SCALE executes
—-M: Specify a machine names file for SCALE parallel capabilities.
-M /path/to/machine/names/file
-n: Nice level on Nix systems, ignored on Windows. Default: -n 2

-N: Number of nodes on which to execute MPI directives. -N 20

15



—O:

Overrides the default inputfile.out output name. The .out extension is
appended by scalerte, so there is no need to specify the extension.

-0 path/to/outputfile

NOTE: If the path/to/outputfile already exists, it will be deleted. If this
option is specified while in stack mode (multiple input files), the value
provided is prepended to the inputfile's basename.

batch6.1 triton* -o myout resultsin output names
myout.triton*.out

: Set block letters. This prints ASCII art banners into your output file.
: Keep the working directory after execution
: Overrides platform directory. -s Linux x86 64

: No new temporary directory. Uses last temporary directory, -r is

implied.

: Specify working directory.

-T directory/path

NOTE: If - T is specified while in stack mode (multiple input files) the
value provided is appended with the index of the file.

batch6.1l tO0.inp tl.inp t2.inp -T mytmp

results in mytmp, mytmp1, and my tmp2 temporary directories.

: Turn on verbose activity printing for scalerte.
: Print the scalerte version date.
: Do not return XSDRNPM output in a .xsdrnfiles directory.

: Add date to the output filename.

Produces output files in the form of
inputfile.yyyy.MM.ddThh.mm.ss.out

Where:

* vyyyy—- 1s the year of execution.
* MM- is the month of execution.
¢ dd- is the day of execution.

¢ hh- is the hour of execution.

* mm- is the minute of execution.

16



®* ss- is the second of execution.

Example Invocation

For users familiar with previous invocation of the SCALE batch script, usage can
remain the same. Note that options can be specified both before and after the input
file(s). Note that the examples below assume that batché6.1 is called from the SCALE
6.1 cmds directory or that the SCALE 6.1 cmds directory is in your system path.

Invoke SCALE on a single input file named HelloWorld.inp

batch6.1l HelloWorld

or

batch6.1 HelloWorld.inp

Invoke SCALE on all input files patterned HelloWorld*.inp

batch6.1 HelloWorld*.inp

Invoke SCALE on all input files patterned HelloWorld*.inp and print runtime
messages to the console

batch6.1 HelloWorld*.inp -m

Invoke SCALE on all input files patterned HelloWorld*.inp and include hostname and
date/time in the output file’s name

batch6.1l HelloWorld*.inp —-fz

or

batch6.1 HelloWorld*.inp -f -z

Invoke SCALE on HelloWorld.inp and rename output to be MyHello.out
batch6.1l HelloWorld -o MyHello

or

batch6.1 HelloWorld.inp -o MyHello

Invoke SCALE on all files patterned HelloWorld*inp and rename output to be
MyHelloWorld*.out.

NOTE: When SCALE is run in stack mode (multiple inputs), the output override is
prepended to the input file’s name.

batch6.1 HelloWorld*.inp -o My

17



Invoke SCALE on HelloWorld.inp and keep the working directory.

batch6.1 HelloWorld.inp -r

Invoke SCALE on HelloWorld.inp and override and keep the working directory.

batch6.1l HelloWorld.inp -r -T myHelloWorldTempDir

Invoke SCALE on HelloWorld.inp and specify the number of threads to be 4.

Batch6.1l HelloWorld.inp -I 4

SCALE Sample Problems

The SCALE sample problems are carefully designed by the SCALE developers to
verify the installation and functionality of SCALE relative to expected results.
scalerte has a built in scripting interface to allow for invocation of several groupings
of sample problems, from individual problems, problems for a specific module,
‘short’ subset, or all samples. The sample problems will print a message indicating
the currently running sample problem, followed by the differences between ORNL-
generated results and the newly generated results for the sample problem(s).

To invoke all sample problems do the following.
batch6.1l @samples

Every sample problem is exposed as a target, as well as all are grouped for
convenience.

To invoke the ‘short’ subset of the sample problems, do the following.
batch6.1l @samples short

To invoke sample problems for a particular module or sequence, use
batch6.1l @samples modulename

where modulename is the name of the module or sequence to test, e.g. centrm
To invoke a single sample problem sample problem, do the following.
batch6.l @samples problemname

where problemname is the name of the specific sample problem to test, e.g.
centrm-pwr

Because the target system in the scripting layer is based on words contained in a
target’s category attribute, users can, for example, execute all CSAS sample
problems (cecsas5, cecsas6, csas5, csas6) by doing the following.

18



batch6.1l @samples csas

Built into the target system is a concept of groups, maximum of 8. This provides for
a convenient way by which to run groups of sample problems concurrently. If you
have 8 processors you can run each group concurrently with the following:

Windows console:

If your computer does not have 8 processors, we can stack the groups to
accommodate arbitrary number of processors. Here is an example of running the
groups on 4 processors:

Windows console:

19



For any problem or questions, please contact scalehelp@ornl.gov.

SCALE Variables

This section describes the environment variable used within scalerte. These
variables can be access through SCALE’s shell module to populate the working
directory, and/or to return SCALE generated files that are not returned by scalerte.

There are seven primary locations known by scalerte. These primary locations are:
-The user’s home directory, HOME.
*Nix systems, $HOME, /home/uid.
*Windows, %HOME%, C:\Users\uid.
- The directory of SCALE, SCALE.
*Nix systems, $SCALE, location of user’s installation. Typically /scale/scale#.
*Windows, %SCALE%, location of user’s installation. Typically C:\Scale#.
- The directory of the input file, INPDIR.
*Nix systems, $INPDIR.
*Windows, %INPDIR%.

- The directory of the output file, OUTDIR, by default, this is the same as INPDIR,
because the output file is written next to the input file.

*Nix systems, $OUTDIR.
*Windows, %0OUTDIR%.

- The directory from which SCALE was invoked, the return directory, RTNDIR. This
is the directory your console will return to upon completion.

*Nix systems, $RTNDIR.
*Windows, %RTNDIR%.
- The directory that contains the SCALE data, DATA.
*Nix systems, $DATA.
*Windows, %DATA%.
- The working directory for a given input file, TMPDIR, or shorthand TMP.
*Nix systems, $TMPDIR, $TMP.

*Windows, % TMPDIR%, % TMP%.

20



There are several secondary locations, located in the SCALE directory tree. These
are as follows:

-The directory containing the command scripts associated with SCALE, CMDS.
*Nix systems, $CMDS.
*Windows, % CMDS%.

-The directory containing the platform-specific compiled programs, PGMDIR, or
legacy PGM_DIR.

*Nix systems, $PGMDIR, $PGM_DIR.
*Windows, %PGMDIR%, %PGM_DIR%.

Lastly, there are several environment variables provided for convenience, and/or
associated with output data that can be useful.

-The directory containing the ORIGEN data files, ORIGENDIR.
*Nix systems, SORIGENDIR.
*Windows, %ORIGENDIR%.

-The base name of the input file, BASENAME. This is the name of the input file
without both absolute path and extension.

*Nix systems, $BASENAME, or $CASE_NAME.
*Windows, %BASENAME%, or % CASE_NAME%.

-The base name of the output file, OUTBASENAME, or legacy CASE_NAME. This is the
name of the output file without both absolute path and extension.

*Nix systems, $§OUTBASENAME, or $CASE_NAME.
*Windows, %0OUTBASENAME%, or %CASE_NAME%.

-The base name of the output file, OUTBASE. This is the absolute name of the output
file without absolute file extension.

*Nix systems, SOUTBASE.
*Windows, %OUTBASE%.

-The absolute path to the input file, INPUTFILE.
*Nix systems, $INPUTFILE.

*Windows, %INPUTFILE%.

21



-The absolute path to the output file, OUTFILE.
*Nix systems, $OUTFILE.
*Windows, %OUTFILE%.

- The directory containing SMORES output, SMORESDIR. If SMORES data were
output, these data will be located in OUTDIR\OUTBASENAME.outfiles directory.

*Nix systems, $SMORESDIR.
*Windows, %SMORESDIR%.

- The directory containing USLSTATS output, USLSTATSDIR. If USLSTATS data were
output, these data will be located in OUTDIR\OUTBASENAME.uslstats directory.

*Nix systems, $USLDIR.
*Windows, %USLDIR%.

- The directory containing CENTRM output, CENTRMDIR. If CENTRM data were
output, these data will be located in OUTDIR\OUTBASENAME.centrmfiles directory.

*Nix systems, $CENTRMDIR.
*Windows, % CENTRMDIR%.

- The directory containing XSDRNPM output, XSDRNDIR. If XSDRNPM data were
output, these data will be located in OUTDIR\OUTBASENAME.xsdrnfiles directory.

*Nix systems, $XSDRNDIR.
*Windows, %XSDRNDIR%.

-The platform specific file separator, FS. This is either back slash (\) on Windows, or
forward slash (/) on Nix systems.

*Nix systems, $FS.
*Windows, %FS%.

22



